Probabilistic Analysis of the Upwind Scheme for Transport
نویسندگان
چکیده
We provide a probabilistic analysis of the upwind scheme for d-dimensional transport equations. We associate a Markov chain with the numerical scheme and then obtain a backward representation formula of Kolmogorov type for the numerical solution. We then understand that the error induced by the scheme is governed by the fluctuations of the Markov chain around the characteristics of the flow. We show, in various situations, that the fluctuations are of diffusive type. As a by-product, we recover recent results due to Merlet and Vovelle [13] and Merlet [12]: we prove that the scheme is of order 1/2 in L∞([0, T ], L(R)) for an initial datum in BV (R) and of order 1/2 − ε, for all ε > 0, in L∞([0, T ]×Rd) for an initial datum in W (R). Our analysis provides a new interpretation of the numerical diffusion phenomenon. Résumé. Nous proposons une analyse probabiliste du schéma upwind pour les équations de transport en dimension d quelconque. Pour cela, nous associons au schéma une châıne de Markov qui nous permet d’obtenir une formule de représentation de type Kolmogorov pour la solution numérique. Nous comprenons alors que l’erreur due au schéma est gouvernée par les fluctuations de la châıne de Markov autour des caractéristiques du transport. Nous montrons, dans des situations diverses, que ces fluctuations sont de type diffusif. Comme conséquence, nous retrouvons des résultats récents de Merlet et Vovelle [13] et Merlet [12] : nous montrons que le schéma upwind est d’ordre 1/2 dans L∞([0, T ], L(R)) pour une donnée initiale dans BV (R), et d’ordre 1/2 − ε pour tout ε > 0 pour une donnée initiale dans W (R). Cette analyse donne une interprétation nouvelle du phénomène de diffusion numérique.
منابع مشابه
Development of an Upwind Algorithm at Subsonic Regions in the Solution of PNS Equations
In this paper an upwind algorithm based on Roe’s scheme is presented for solution of PNS equations. Non iterative-implicit method using finite volume technique is used. The main advantage of this approach, in comparison with similar upwind methods, is reduction of oscillations around sonic line. This advantage causes the present method to be able to analyze supersonic flows with free stream Mac...
متن کاملDevelopment of an Upwind Algorithm at Subsonic Regions in the Solution of PNS Equations
In this paper an upwind algorithm based on Roe’s scheme is presented for solution of PNS equations. Non iterative-implicit method using finite volume technique is used. The main advantage of this approach, in comparison with similar upwind methods, is reduction of oscillations around sonic line. This advantage causes the present method to be able to analyze supersonic flows with free stream Mac...
متن کاملIncompressible laminar flow computations by an upwind least-squares meshless method
In this paper, the laminar incompressible flow equations are solved by an upwind least-squares meshless method. Due to the difficulties in generating quality meshes, particularly in complex geometries, a meshless method is increasingly used as a new numerical tool. The meshless methods only use clouds of nodes to influence the domain of every node. Thus, they do not require the nodes to be conn...
متن کاملDiscrimination of Power Quality Distorted Signals Based on Time-frequency Analysis and Probabilistic Neural Network
Recognition and classification of Power Quality Distorted Signals (PQDSs) in power systems is an essential duty. One of the noteworthy issues in Power Quality Analysis (PQA) is identification of distorted signals using an efficient scheme. This paper recommends a Time–Frequency Analysis (TFA), for extracting features, so-called "hybrid approach", using incorporation of Multi Resolution Analysis...
متن کاملA Parameter Uniform Numerical Scheme for Singularly Perturbed Differential-difference Equations with Mixed Shifts
In this paper, we consider a second-order singularly perturbed differential-difference equations with mixed delay and advance parameters. At first, we approximate the model problem by an upwind finite difference scheme on a Shishkin mesh. We know that the upwind scheme is stable and its solution is oscillation free, but it gives lower order of accuracy. So, to increase the convergence, we propo...
متن کامل